本文将介绍如何通过Flink读取Kafka中Topic的数据。和Spark一样,Flink内置提供了读/写Kafka Topic的Kafka连接器(Kafka Connectors)。Flink Kafka Consumer和Flink的Checkpint机制进行了整合,以此提供了exactly-once处理语义。为了实现这个语义,Flink不仅仅依赖于追踪Kafka的消费者group偏移量,而且
在既往的内容中,我们介绍了多因素回归分析时,为探讨影响因素对结局事件的影响大小,可以利用森林图更直观的将回归结果可视化。还没来得及阅读的小伙伴请点击查看:一文带你玩转森林图!;手把手教绘制回归分析结果的森林图『GraphPad Prism和Excel』;绘制回归分析结果的森林图,R和Stata软件学起来!同样是构建多因素回归模型,往往我们另一个主要目的是为了对结局事件的发生风险进行预测,那么是否也
我们数据库中的数据一直在变化,有时候我们希望能监听数据库数据的变化并根据变化做出一些反应,比如更新对应变化数据的缓存、增量同步到其它数据源、对数据进行检测和审计等等。而这种技术就叫
kafka查看消息堆积时可以使用